3D Printing with Stem Cells


Transplants are expensive and risky, and donor organs are in short supply. Researchers at UC San Diego are working on technology to change all of that. It’s called bioprinting. In simple terms, bioprinting is 3D printing with living tissue. Researcher Shaochen Chen has been perfecting the process in his lab for years.

Bioprinting is a complex process that takes place in a matter of seconds right before your eyes. Chen’s lab builds their own printing machines, which shine light into a gel the team has developed. Any spot the light hits becomes solid. Because the process uses light, it allows the team to recreate microscopic structures like liver cells or vascular networks with incredible precision.

While the process enables researchers to accurately reproduce biological structures, it’s what’s inside the gel that makes bioprinting truly remarkable. The gel can be filled with stem cells from a potential transplant recipient. Those cells can fuse with tissue in the body as the gel disintegrates, essentially repairing damage with the patient’s own cells. Chen’s lab has shown the process can work in rats with severe spinal cord injuries. Someday, the process could be used in humans to do the same.

Bioprinting is also helpful to researchers in other fields. Chen has teamed up with Alysson Muotri and Karl Wahlin to help them study the connection between the eye and the brain. Their labs are conducting research using organoids – tiny organ-like structures grown from stem cells. They realized in order to effectively study how brain and retinal organoids interact with one another, they need to physically separate them at just the right distance, similar to how they might be separated in the womb. Chen’s lab developed a bioprinted structure to achieve that separation, taking the partnership to the next level.

Watch — 3D Printing with Stem Cells – Shaochen Chen